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MOTIVATION 
When hearing or seeing something we understand, we feel good; if not, we feel uneasy. That is exactly 

what happens when we look at a well or badly behaved S-parameter.  

 

  

Figure 1:Transmission Line vs. Complex Topology S-parameter 

The smooth line in Figure 1 makes us feel good. We have a sense of knowledge of how it would behave: 

for example, the longer it is, the more losses it will have, and we strongly suspect the smoothness of the 

curve is an indication that the line is well matched, etc.  

On the other hand, the jagged line in Figure 1 with all those wiggles is not readily understandable. When 

looking at the curve carefully, we see two distinct, but defined periodicities that we do not yet quite 

understand. These types of curves give us headaches. 

That ugly curve and all the resonances or periodicities seen in it are mostly due to half-wave resonances. 

Half-wave resonances are one of the most common and pernicious resonances encountered in 

topologies, but many times they go unnoticed or are ignored. 

I believe it is important for the signal integrity engineer to be able to fully understand, identify, and 

address these resonances in different topologies.  

Let me tell you how this article is organized: 
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I will start with a simple definition and the topological elements required for a resonance to develop, 

followed with frequency domain analysis. Unfortunately, as much as I would like to avoid this, I will have 

to throw some theory with math in here, but I will try my best to make it clear and simple. In my world 

view, I feel the best way to understand a particular concept is when you see it right in front of you in a 

simple formula, and in the case of half-wave resonances, this happens several times in the frequency-

domain analysis. 

In the frequency domain, I will go through a few cases to illustrate different theoretical points, some 

that you might normally find in books. I will relate the formulation of the analysis to what you should or 

should not expect to see in S-parameters. 

After the frequency domain, I will transition to the time domain, and do a similar analysis. Since this 

section comes after all the frequency domain analysis formulation, it will be a little lighter on math, but 

it will rather be more visual, and I hope very easily understandable. At the end of this section, I will 

relate the frequency and time domain, and summarize simple relationships that can aid to 

approximately identify the values of these resonances in real topologies. 

Then, I’ll show some subtleties of half-wave resonance that will depend on the type of discontinuities at 

the end and show how reactive termination will act differently than resistive termination. 

Finally, we’ll bring all the knowledge acquired though the text, and we’ll apply it to some real topologies. 

I will provide two examples with highly practical application relevance for the SI engineer. 
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FREQUENCY DOMAIN ANALYSIS 
Let us start with a definition of resonance and the elements required for it to develop. 

A resonance is the interaction between at least two discontinuities of any kind separated by an 
electrical length. Let us examine this definition starting from the end: 

• Electrical Length: For something to resonate, separation is needed. The distance between 
two discontinuities in the electrical world is relative. Let's consider a one-inch transmission 
line on a standard PCB with a nominal propagation delay of 160 ps/in. and let's ask if this is 
enough separation. As many things in SI, the answer is, it depends. For example, at 100 GHz, 
with a wavelength of λ = 62.5 mils, a one-inch transmission line is a big separation; we will 
have 16 full cycles traveling on the transmission line at any point of time. On the other hand, 
if we consider a frequency of 100 KHz, with a wavelength λ =62500 inches, a one-inch 
transmission line is just a small fraction of the wavelength, and the circuit (separation 
between discontinuities) could be considered lumped. In other words, there is no need to 
include the transmission line for calculations. The term electrical length captures this 
distinction. 

• Discontinuities: After having an electrical separation, waveforms need to bounce back and 
forth, hence discontinuities are required at the end points for this to happen. With perfect 
matched loads, no reflections will happen and there will not be a resonance. The other 
important word in the definition is “two.” In order to have a resonance there needs to be at 
least two of these discontinuities. One discontinuity will be sufficient to generate a non-
ideal transmission, but not sufficient to generate a resonance with its associated dip in the 
insertion loss profile. 

• Interaction: The reason a resonance develops is due to the interaction between these 
discontinuities. In other words, the reflection at one end should be seen at the other end 
after a finite amount of time. This is key for the resonance to develop. As will be seen later, 
different type of discontinuities at the ends of the transmission line will generate different 
type of resonances and standing wave patterns. In practical terms, this means the 
attenuation along the interconnect should not be very big, otherwise the wave will not 
bounce back and forth. 

I will start with a very quick review of phasors which is simply a way to represent vectors that makes the 

whole transmission line formulation much more elegant. 

 

Phasors 
Oscillations are all around us: your heartbeat, the rotation of the earth around the sun, the pendulum of 

a clock in time and space. The more you look, the more you realize the vast number of examples where 

oscillatory behavior is present as an inherent part of the world. With that in mind it would be good to 

develop a method to represent oscillatory behavior in its most fundamental form with sinusoidal 

functions and represent it elegantly. Phasors come to the rescue. 

A phasor is a complex number representing a sinusoidal function with angular frequency 𝜔, amplitude A 

and initial phase 𝜙. 
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A simple sinusoidal source, either current or voltage can be written as follows V = A ⋅ sin (2πf + φ), 
where A is the signal amplitude, f is the frequency in Hz [cycles/sec] and 𝜙 is the initial angle or phase.  

If we imagine a vector rotating around its origin, every time the vector completes a revolution, it has 
traveled an angle of 2π or 360⁰. In a linear scale, we represent frequency in units of Hz= cycles/sec, so 
one cycle = 2π. When we represent this as a vector rotating around its axis, in angular form, this is 
equivalent to ω = 2πf [rad/sec], meaning when f = 1 cycle => ω = 2π, one revolution. 

  

Figure 2: Phasor Representation 

 

Imagine a vector rotating at a constant speed 2πf, if you project that rotation over the “x” or “y” 

axis, you will get either cos (2πf ⋅ t) or sin (2πf ⋅ t) function, respectively. Let us now imagine we 

have a voltage source that has an initial phase φ(z), and a particular frequency f. The fact φ(z) is 

dependent of position 𝑧, is irrelevant, for now imagine this is a magic voltage source, that if you 

move it to a different position, its initial phase changes. 

 𝑉 (𝑡, 𝜑) = 𝐴 ⋅ cos(2𝜋𝑓 ⋅  𝑡 +  𝜑(𝑧)) 
 

1 

And remembering Euler’s identity: 

 𝑒𝑖𝑥 = cos(𝑥) + 𝑖 ⋅ 𝑠𝑖𝑛(𝑥) 2 

So, we can say: 

  𝑉(𝑡, 𝜑(𝑧)) = ℝ𝑒(𝐴 ⋅ 𝑒
𝑖(2𝜋𝑓𝑡+𝜑(𝑧))) 3 

  

 V(𝑡, 𝜑(𝑧)) = ℝ𝑒(𝐴 ⋅ 𝑒
𝑖(2𝜋𝑓𝑡) ⋅ 𝑒𝑖(𝜑(𝑧))) = ℝ𝑒(𝐴 ̃ ⋅ 𝑒

𝑖(𝜑(𝑧))) 4 
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Where the phasor 𝐴 ̃ defined with a tilde on top is: 

 𝐴 ̃ = ℝ𝑒(𝐴 ⋅ 𝑒
𝑖(2𝜋𝑓𝑡)) 5 

Finally, the voltage source shown on 1 can be more succinctly represented as: 

 𝑉(𝜑(𝑧)) = 𝐴 ̃ ⋅ 𝑒𝑖𝜑(𝑧) 6 

Yeah, I know, the ℝ𝑒 has been omitted and I do not like it either, but that is common in all the 

literature, meaning a priori it is known we will be taking only the real part, so we do not put it in 

to begin with. In any event, we see how nicely and succinctly we have written the equation for 

the source and, in addition we have hidden the voltage source time dependency inside the phasor 

𝐴 ̃. 

Please also note that equally as easy, we could have defined the phasor, with dependency on 

𝜑(𝑧) such the source was only dependent on time, that is an equally valid phasor representation. 

 

Brief Review of the Wave Equation Solution 
I will spare you the derivation of Maxwell equations to get to the Telegrapher’s equations, since that can 

be found pretty much in every EM book.  To highlight some useful points, I will start from the solutions 

of the Telegrapher’s equation. For this study, please imagine a wave on a lossless transmission line 

propagating in the 𝑧 direction with characteristic impedance 𝑍𝑐 

 

Figure 3: Wave Solution Equations 

Note the solution contains two waves, one propagating in the forward and one propagating in the 

backward direction. Following the above figure, the propagation direction can be easily understood. 
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Another important parameter that will prove useful in our calculations is the input impedance 𝑍𝑖𝑛. This 

is the impedance seen at the input of a transmission line including reflections. If we just divide the 

voltage/current wave solution above and perform some math magic, we will get 

 
𝑍𝑖𝑛(𝑧) = 𝑍𝑐 ⋅

𝑍𝐿 + 𝑖 ⋅ 𝑍𝐶 ⋅ tan(𝛽𝑧)

𝑍𝐶 + 𝑖 ⋅ 𝑍𝐿 ⋅ tan(𝛽𝑧)
= 𝑍𝑐 ⋅

𝑒𝑖𝛽𝑧 + Γ𝐿 ⋅ 𝑒
−𝑖𝛽𝑧

𝑒𝑖𝛽𝑧 − Γ𝐿 ⋅ 𝑒−𝑖𝛽𝑧
 

7 

 

 Γ𝐿 is the reflection coefficient at the load. Note the conceptual difference between 𝑍𝑐 𝑎𝑛𝑑 𝑍𝑖𝑛.The 

characteristic impedance,  𝑍𝑐  is the ratio of voltage and currents of only one wave propagating through 

the transmission line at every point.  On the other hand, 𝑍𝑖𝑛 is the ratio of voltage and current of all the 

forward and backward superimposed waves at a single location, in this case the input.  

We can represent the wave equation solution of Figure 3 in phasor form as follows: 

By defining the phasors by a ̃ : 

 𝑉̃𝑎 = 𝐴 ⋅ 𝑒
𝑖𝜔𝑡 𝑎𝑛𝑑 𝑉̃𝑏 = 𝐵 ⋅ 𝑒

𝑖𝜔𝑡 8 

 

Furthermore, we can say: 

 𝑉̃+ = 𝑉̃𝑎 ⋅ 𝑒
−𝑖𝛽𝑧 𝑎𝑛𝑑 𝑉̃− = 𝑉̃𝑏 ⋅ 𝑒

𝑖𝛽𝑧 9 

 

I can then simply represent the wave solution as follows: 

 𝑉(𝑧) = 𝑉̃𝑎 ⋅ 𝑒
−𝑖𝛽𝑧 + 𝑉̃𝑏 ⋅ 𝑒

𝑖𝛽𝑧 = 𝑉̃+ + 𝑉̃− 10 

This formula nicely allows us to define the reflection coefficient  Γ as: 

 
Γ =

𝑉̃−

𝑉̃+
= 
𝑉̃𝑏 ⋅ 𝑒

𝑖𝛽𝑧

𝑉̃𝑎 ⋅ 𝑒−𝑖𝛽𝑧
=
𝐵

𝐴
⋅ 𝑒𝑖2𝛽𝑧  

𝑧=0=𝑙𝑜𝑎𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
⇒               Γ𝐿 = 

𝐵

𝐴
  

11 

 

From 10 and 11 we can say: 

 𝑉(𝑧) =  𝑉̃+ ⋅ (1 + Γ𝐿) =  𝑉̃𝑎 ⋅ (𝑒
−𝑖𝛽𝑧 + Γ𝐿 ⋅ 𝑒

𝑖𝛽𝑧) 12 

 

Equation 11 is great because it shows the reflection coefficient definition clearly, when considering the 

reference plane (i.e., z=0) at the load location (end of the line) 

Let us pause a bit here, and take note of a few subtleties: 

1. The ℝ𝑒 is not shown as mentioned previously, but remember, it is there (omitted for simplicity) 
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2. The fact that in the TEM mode the electric and magnetic field are perpendicular to the 

propagation direction, makes the propagation and the frequency(time) dependency of the fields 

independent.  

So, where are we?  

We have shown the solution to the Telegrapher’s equation can have two traveling waves, one 

propagating in the positive direction, from source to load represented by  𝑉̃𝑎 ⋅ 𝑒
−𝑖𝛽𝑧 , and one traveling 

in the backward direction from load to source represented by 𝑉̃𝑏 ⋅ 𝑒
𝑖𝛽𝑧. The magnitude of the backward 

propagating wave will depend on reflections that can be calculated from our old friend the reflection 

coefficient at the load Γ𝐿.  We’ve also learned that each propagating wave will have a time dependency 

𝑉̃𝑎 = 𝐴 ⋅ 𝑒
𝑖𝜔𝑡 𝑎𝑛𝑑 𝑉̃𝑏 = 𝐵 ⋅ 𝑒

𝑖𝜔𝑡 due to the excitation that is independent of the perpendicular 

propagation of the wave. 

With that in mind after a short review of S-parameter definition we can start analyzing the resonance 

case and link it to what we can expect in the S-parameter frequency domain. 

S-Parameter Definition Review 
In order to meet the conditions in Figure 4, there should not be a reflection at the 𝑥 = 0, meaning the 
transmission line must be perfectly matched to the source and/or load 𝑎|𝑏1|2 (0). Since 𝑎(𝑥) , 𝑏(𝑥) are 

dependent directly on the traveling voltage and current waveforms and because we know at the 
measurement point there will not be any reflections, S-parameters can be directly calculated by a ratio 
of voltages with respect to an ideal transfer.  

 

 

Figure 4: S-Parameter Definition Diagram 

 

The normalized waves, 𝑎(𝑥), 𝑏(𝑥) , have been defined as functions of phasors previously introduced, so 

we are in luck, and we can start complicating topologies to get resonances and relate the voltages to the 
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S-parameters. Before we get into cases involving transmission lines, let’s calculate the S-parameter of a 

shunt 50 Ohms resistor. 

 

Figure 5: S-parameter 50 Ohms Shunt Diagram 

Let us drive from port 1 first and find 𝑆11(𝑑𝐵), 𝑆21(𝑑𝐵) 

 
𝑆11 =

𝑏1(𝐿1)

𝑎1(𝐿1)
=
𝑉̃1
−(𝐿1)

𝑉̃1
+(𝐿1)

= −
1

3 𝑑𝐵
⇒ 𝑆11(𝑑𝐵) = 20 ⋅ log10 |−

1

3
| = −9.54𝑑𝐵 

13 

  

𝑆21 =
𝑏2(𝐿2)

𝑎1(𝐿1)
=
𝑉̃2
−(𝐿2)

𝑉̃1
+(𝐿1)

=
2

3 𝑑𝐵
⇒ 𝑆21(𝑑𝐵) = 20 ⋅ log10 |

2

3
| = −3.52𝑑𝐵 

 

14 

 

 

Figure 6: S-parameter 50 Ohms Shunt Results 
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Matched Case ( 𝑍𝑆 = 𝑍𝐶 = 𝑍𝐿 ) 
This is the simplest but most boring case since there will be only one propagating wave traveling on the 
transmission line. Following previous definitions: 

 
Γ𝐿 =

𝑍𝐿 − 𝑍𝐶
𝑍𝐿 + 𝑍𝐶

= 0, 𝑍𝑖𝑛 = 𝑍𝐶  

 

15 

 

 𝑉̃𝑎 ⋅ (𝑒
−𝑖𝛽𝑧 + Γ𝐿 ⋅ 𝑒

𝑖𝛽𝑧) = 𝑉̃𝑎 ⋅ 𝑒
−𝑖𝛽𝑧 16 

 

 𝑣(𝑧, 𝑡) = 𝑉 ⋅ cos (𝜔𝑡 − 𝛽𝑧) 17 

 

 

Figure 7: Matched Case S-parameter Diagram 

As we can see in 15 the reflection coefficient at the load is zero, meaning the input impedance in 

the line is identical to 𝑍𝐶  , this in turns means that there are no reflections and hence we are left 

with only one propagating wave from source to load. In term of S-parameters, just replacing our 

DUT by a perfectly matched transmission line as shown in Figure 7, yield:  

 
𝑆11 =

𝑏1(𝐿1)

𝑎1(𝐿1)
=
𝑉̃1
−(𝐿1)

𝑉̃1
+(𝐿1)

= 0
𝑑𝐵
⇒ 𝑆11(𝑑𝐵) = 20 ⋅ log10|0| = −∞ 𝑑𝐵 

18 

  

𝑆21 =
𝑏2(𝐿2)

𝑎1(𝐿1)
=
𝑉̃2
−(𝐿2)

𝑉̃1
+(𝐿1)

= 1
𝑑𝐵
⇒ 𝑆21(𝑑𝐵) = 20 ⋅ log10|1| = 0 𝑑𝐵 

 

19 

 

Note there will be a phase difference between 𝑉̃2
−(𝐿2) 𝑎𝑛𝑑 𝑉̃1

+(𝐿1) due to the transmission line 

delay, not analyzed here.  

Also please note that since now the DUT has a delay, I have included a 𝑧 axis that represents a 

distance within the DUT. I have chosen 𝑧 just to differentiate from 𝑥 that has already been used 

on the external transmission lines for the S-parameters. 
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Let us spice up the analysis a bit and consider a DUT with a single, but strong reflection at the 

load side and see what happens. 

 

Shorted Case ( 𝑍𝑆 = 𝑍𝐶 , 𝑍𝐿 = 0 ) 
If we grab the transmission line on the previous case, but we short it at the end, things start to 

get a little more interesting, since now, we are forcing a reflected wave to travel back. In this 

case, we are forcing a full reflection since the transmission line is shorted, meaning everything 

will be reflected and nothing will be transmitted. 

 

 

Figure 8: S-parameters, Shorted Transmission Line Diagram 

 

 
Γ𝐿 =

𝑍𝐿 − 𝑍𝐶
𝑍𝐿 + 𝑍𝐶

= −1, 𝑍𝑖𝑛 = 𝑍𝐶 ⋅
𝑒𝑖𝛽𝑧 − 𝑒−𝑖𝛽𝑧

𝑒𝑖𝛽𝑧 + 𝑒−𝑖𝛽𝑧
 

 

20 

 

 
𝑉(𝑧) = 𝑉̃𝑎 ⋅ (𝑒

−𝑖𝛽𝑧 + Γ𝐿 ⋅ 𝑒
𝑖𝛽𝑧) = 𝑉̃𝑎 ⋅ (𝑒

−𝑖𝛽𝑧 − 𝑒𝑖𝛽𝑧) =
−2𝑖 ⋅ 𝑉̃𝑎 ⋅ (𝑒

𝑖𝛽𝑧 − 𝑒−𝑖𝛽𝑧)

2𝑖
  

21 

 

 𝑣(𝑧, 𝑡) = −2𝑖 ⋅ 𝑉̃𝑎 ⋅ sin(𝛽𝑧) =  𝑒
−𝑖
𝜋
2 ⋅ 2𝐴 ⋅ 𝑒𝑖𝜔𝑡̇ ⋅ sin(𝛽𝑧) 22 

  

𝑣(𝑧, 𝑡) = ℝ𝑒 (2𝐴 ⋅ 𝑒
𝑖(𝜔𝑡−

𝜋
2
). sin(𝛽𝑧)) = 2 ⋅ 𝐴 ⋅ cos (𝜔𝑡 −

𝜋

2
) ⋅ 𝐬𝐢𝐧 (𝜷𝒛) 

 

23 

Equation 23 shows something different: (1) the maximum voltage attained is 2 V, even though we are 
only sending 1 V. This highlights the fact we'll have reflected waveforms that will constructively add at 
different points in the transmission line and could duplicate the total voltage at some location, (2) the 
normal phasor time rotation cos(𝜔𝑡 + 𝜙) seems to be modulated with a sin (𝛽𝑧) function that depends 
on z (distance). When z=0, right at the load sin(𝛽𝑧) = 0 the voltage will be zero. This is expected, since 
we shorted the line at the load. The remarkable thing is if we move away from the load any multiples of 

1/2 wavelength 𝑧 = 𝑛 ⋅
𝜆

2
, 𝑠𝑖𝑛𝑐𝑒 𝛽 =

2𝜋

𝜆
⇒ sin(𝛽𝑧) = sin(𝑛𝜋) = 0, the voltage will also be exactly zero, 
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meaning, the load voltage of zero value is repeating at periodical intervals in the transmission line as 

long as the transmission line  is longer than 
𝜆

2
. This clearly shows a standing wave is formed.  

Let's take for example 𝑧 = 𝑛 ⋅
𝜆

4
, 𝑠𝑖𝑛𝑐𝑒 𝛽 =

2𝜋

𝜆
⇒ sin(𝛽𝑧) = sin (𝑛

𝜋

2
) = 1, meaning at that spatial point 

the voltage will be at its maximum of 2 V. Recognize the voltage will not be 2 V at all times, recall we 
have a rotating phasor which means the instantaneous voltage at that location will change based on the 

cos (𝜔𝑡 −
𝜋

2
) function and only when it’s 1, the instantaneous absolute voltage will be at the 

maximum of 2 V. 

Imagine each transmission line point or position has a maximum voltage it can attain and no more. If for 

example we make 𝑧 =
𝜋

8
,  this will result on a maximum voltage of approximately 0.75 V, meaning the 

time varying voltage at that point will never exceed that value. Therefore, the standing wave should be 

viewed as the envelope under which the time varying signal 𝐴 ⋅ 𝑒𝑖(𝜔𝑡−
𝜋

2
) will be oscillating.  

Now we can formally introduce a new metric called VSWR (voltage standing wave ratio), that is defined 
as the ratio of the maximum to minimum voltage on the transmission line, a value of 1 means no 
reflections and it's highly desirable on many conditions, a value bigger than 1 implies reflections and the 
formation of a standing wave. In our example, 𝑉𝑆𝑊𝑅 = ∞, represents full reflection. Figure 9 shows the 
VSWR of our example. 

 

 

Figure 9: VSWR 

Let us now calculate the S-parameters for this case. 

 
𝑆11 =

𝑏1(𝐿1)

𝑎1(𝐿1)
=
𝑉̃1
−(𝐿1)

𝑉̃1
+(𝐿1)

= −1
𝑑𝐵
⇒ 𝑆11(𝑑𝐵) = 20 ⋅ log10|−1| = 0 𝑑𝐵 

24 
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𝑆21 =
𝑏2(𝐿2)

𝑎1(𝐿1)
=
𝑉̃2
−(𝐿2)

𝑉̃1
+(𝐿1)

= 0
𝑑𝐵
⇒ 𝑆21(𝑑𝐵) = 20 ⋅ log10|0| = −∞ 𝑑𝐵 

 

25 

 

Even though the reflection (short) happens at port 2, the reflected wave will return unchanged in 

magnitude in our lossless example arriving as 𝑉̃1
−(𝐿1) with equal magnitude and opposite phase as 

𝑉̃1
+(𝐿1) resulting on an 𝑆11 = 0𝑑𝐵. Equivalently for the transfer, we have a short at port 2, meaning no 

transfer will be possible at any frequency so 𝑆21 = −∞ 

But wait, we have a full reflection in here, so where is my resonance or dips in the S-parameters?  

The sometime confusing part is that since we have a standing wave, we might expect to see some sort 
of insertion loss dips (or resonances), but we don't. Going back to the resonance definition, we notice 
we would need at least two reflections or discontinuities with some separation between them for a 
resonance to develop. In this case we have only one discontinuity at the load since the source is 
perfectly matched. The single reflection is sufficient to produce a strong standing wave and VSWR, but 
the presence of a standing wave does not imply a resonance. 

Resonant Case ( 𝑍𝑆 = 𝑍𝐿 = 33Ω, 𝑍𝑐 = 50 ) 
Finally, we have arrived at the case with two discontinuities that should produce standing waves and 
dips/peaks in the S-parameters insertion loss.  

Please take a moment to study the DUT. It’s a lossless transmission line with a delay of 150ps, 𝑍𝐶 = 50 

with  
100

3
Ω discontinuity at each end. The termination value is the same at both ends, a condition 

necessary to create a half-wave resonance. The diagram has been created making the connection to the 
DUT with cable fixtures 𝑍𝑓𝑖𝑥  explicit with the intention to make the circuit evident for S-parameters 

extraction. 
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Figure 10: S-Parameters, Resonant Case Diagram 

This topology meets the resonance requirements since it has two discontinuities separated by an 
electrical distance. It is also connected to a Vs through a cable (fixture) with a 𝑍𝑓𝑖𝑥 = 50Ω to prepare the 

topology for evident S-parameter extraction.  

Since this circuit is a bit more complicated, I’ll simplify it by creating its Thevenin equivalent as shown in 
Figure 10 . The Thevenin equivalent circuit can be derived as follows: 

 

𝑉𝑇𝐻 =
𝑉𝑠 ⋅
100
3

50 +
100
3

=
2

5
𝑉𝑠 

26 

  

𝑅𝑇𝐻 =
50 ⋅

100
3

50 +
100
3

= 20Ω 

 

27 

 

The easiest way to visualize this is by creating the Thevenin equivalent circuit as seen from inside the 

DUT toward the source or load, almost as pulling the 
100

3
Ω termination resistance out of the DUT and 

assuming the calculation is done at DC, hence removing 𝑍𝑓𝑖𝑥. Please note, removing 𝑍𝑓𝑖𝑥  in the 

formulation context is valid, since the only purpose of that fixture transmission line is to provide spatial 

separation so we can clearly see the incident and reflected waves at the DUT from the source. Since the 

fixture line is ideal, the only difference between the waveforms at the source/load resistor versus at the 

DUT input/output is simply a phase delay that can be adjusted by changing reference planes. 
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We will calculate the voltages and currents in the circuit at two different wavelengths 𝜆 =
𝜋

4
,
𝜋

2
, since 

with dual discontinuity we should see a resonance and expect to see different results at different 
wavelengths. We'll first derive the results theoretically including the S-parameters calculations, and 
finally we'll do a simulation to show the response over frequency.  

The first step for the calculation is to determine the value of voltages and currents at port 1.  

 

Figure 11: S-Parameters, Port 1 Voltage and Current Calculations 

 

Recognize in Figure 11 that 𝑍𝑖𝑛 observed at the beginning of the line is not 𝑍𝑐, but rather the input 

impedance as shown in 7. At the end of the transmission line there is a discontinuity with its 
corresponding reflection. The transmission line will transform the load reflection through the 
transmission line length in a frequency dependent way and present that reflection at the input of the 
DUT transmission synthesized in 𝑍𝑖𝑛. Also please note 𝑧 = 0  is at the output of the DUT, not at the 
source.  

To calculate the voltage at port 1 for both wavelengths, we need 𝑍𝑖𝑛, and thanks to the Thevenin 

simplification it can be calculated as follows: 

 

{
 
 

 
 𝑧 =

𝜆

2
, 𝑍𝑖𝑛 = 50 ⋅

20 + 𝑖 ⋅ 50 ⋅ tan(𝜋)

50 + 𝑖 ⋅ 20 ⋅ tan(𝜋)
= 20Ω

𝑧 =
𝜆

4
, 𝑍𝑖𝑛 = 50 ⋅

20 + 𝑖 ⋅ 50 ⋅ tan (
𝜋
2)

50 + 𝑖 ⋅ 20 ⋅ tan (
𝜋
2)
= 125Ω

 

28 

 

Note that  𝑍𝑖𝑛 (
𝜆

2
) = 20Ω since at half-wave resonance the DUT transmission line should reproduce the 

load impedance at the other end as shown in Figure 9. With these results, assuming 𝑉𝑠 = 2𝑉, we can 
proceed to calculate the total voltage at port 1 of the DUT. 
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{
 

 𝑧 =
𝜆

2
, 𝑉1(0) =

2

5
𝑉𝑠 ⋅

𝑍𝑖𝑛
𝑍𝑖𝑛 + 𝑅𝑇𝐻

=
2

5
2 ⋅

20

20 + 20
= 0.4𝑉

        𝑧 =
𝜆

4
, 𝑉1(0) =

2

5
𝑉𝑠 ⋅

𝑍𝑖𝑛
𝑍𝑖𝑛 + 𝑅𝑇𝐻

=
2

5
2 ⋅

125

20 + 125
= 0.6897𝑉

 

29 

 

The total current at the DUT transmission line input is: 

 

{
 
 

 
 𝑧 =

𝜆

2
, 𝐼1(0) =

𝑉1(0)

𝑍𝑖𝑛
=
0.4

20
= 20𝑚𝐴

        𝑧 =
𝜆

4
, 𝐼1(0) =

𝑉1(0)

𝑍𝑖𝑛
=
0.6897

125
= 5.5𝑚𝐴
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So far, only the total voltages and currents have been calculated at port 1. The next step is to calculate 

the voltage and current waves injected into the DUT transmission line. Here is where we start to relate 

voltage and currents to propagating waves as expected in S-parameters. 

If you refer to back to (10) you’ll see that 𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉̃
+ + 𝑉̃− 𝑎𝑛𝑑 𝐼𝑡𝑜𝑡𝑎𝑙 =

𝑉̃+− 𝑉̃−

𝑍𝑐
, so replacing the total 

current and voltage we could calculate the incident and reflected waveforms at port 1 as follows: 

 

 

{
𝑧 =

𝜆

2
, 𝑉̃1
+ =

𝑉1(0) + 𝐼1(0) ⋅ 𝑍𝑐
2

=
0.4 + 0.02 ⋅ 50

2
= 0.7𝑉

                  𝑧 =
𝜆

4
, 𝑉̃1
+ =

𝑉1(0) + 𝐼1(0) ⋅ 𝑍𝑐
2

=
0.6897 + 0.0055 ⋅ 50

2
= 0.4823𝑉
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{
𝑧 =

𝜆

2
, 𝑉̃1
− =

𝑉1(0) − 𝐼1(0) ⋅ 𝑍𝑐
2

=
0.4 − 0.02 ⋅ 50

2
= −0.3𝑉

                  𝑧 =
𝜆

4
, 𝑉̃1
− =

𝑉1(0) − 𝐼1(0) ⋅ 𝑍𝑐
2

=
0.6897 − 0.0055 ⋅ 50

2
= 0.2074𝑉

 

32 

 

The propagating waves in the DUT’s transmission line are shown in Figure 12 

 

Figure 12: S-Parameters, Explicit Incident and Reflected Waves 
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At this point we have all the ingredients to calculate the voltage and current at port 2. We simply 

replace the values in the wave equation solution 10 and recalling this is a lossless system and that 𝑉̃1
+ =

𝑉̃2
+𝑎𝑛𝑑 𝑉̃2

− = 𝑉̃1
− due to continuity condition we get: 

 

 

{
𝑧 =

𝜆

2
, 𝑉2(𝐿) = 𝑉̃2

+ ⋅ 𝑒−𝑖𝛽𝑧 + 𝑉̃2
− ⋅ 𝑒𝑖𝛽𝑧 = 𝑉̃1

+ ⋅ 𝑒−𝑖𝜋 + 𝑉̃1
− ⋅ 𝑒𝑖𝜋 = −𝑉̃1

+ − 𝑉̃1
− = −0.4𝑉

𝑧 =
𝜆

4
, 𝑉2(𝐿) = 𝑉̃1

+ ⋅ 𝑒−𝑖
𝜋
2 + 𝑉̃1

− ⋅ 𝑒𝑖
𝜋
2 = −𝑗(−𝑉̃1

+ + 𝑉̃1
−) = 0.2749𝑉∠90°
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All the analysis above was to identify the incident and reflected waves inside the DUT. To calculate S-

parameters, we need to do the same thing, but at the source and load destination, in order to denote 

this, all the voltages will include the subindex P. 

Since we assumed a 𝑉𝑆 = 2𝑉 by following the formulas below, we can easily find the incident and 

reflected waves from and to the ports. Note the 𝑉̃𝑃2
− = 𝑉2(𝐿) simply because that is the signal amplitude 

at the end of the DUT, that gets transmitted without reflections at port 2, which is the necessary 

condition for S-parameter calculation. 

 𝑉𝑃1
+
= 1𝑉, 𝑉

𝑃1

−
= Γ𝑃1 ⋅ 𝑉𝑃1

+
,           𝑉𝑃2

−
= 𝑉2(𝐿)  

𝑍𝑃1 =

100
3 ⋅ 𝑍𝑖𝑛

100
3 + 𝑍𝑖𝑛

, Γ𝑃1 =
𝑍𝑃1 − 50Ω

𝑍𝑃1 + 50Ω

𝑆11 =
𝑏1(0)

𝑎1(0)
=
𝑉𝑃1
−

𝑉𝑃1
+ , 𝑆21 =

𝑏2(𝐿)

𝑎1(0)
=
𝑉𝑃2
−

𝑉𝑃1
+

 

34 

 

Applying the formulation above and converting to dB we obtain: 

 

{
 

 𝑧 =
𝜆

2
, {
𝑆21 = 20 ⋅ log10(|0.4|) = −7.95 𝑑𝐵

  𝑆11 = 20 ⋅ log10(|−0.6|) = −4.43 𝑑𝐵

𝑧 =
𝜆

4
, {
𝑆21 = 20 ⋅ log10(|0.2749|) = −11.21 𝑑𝐵

  𝑆11 = 20 ⋅ log10(|−0.3103|) = −10.16 𝑑𝐵

 

35 

 

I have calculated the effect of the resonance circuit at two specific lengths. Note, the DUT transmission 

line in question has a delay of 150ps. A frequency 𝑓 = 3.33𝐺𝐻𝑧, with a period  𝑇 =
1

3.33𝐺𝐻𝑧
= 300𝑝𝑠 

represents two times the propagation delay. This means that the length of the line  𝑙𝑒𝑛 =
𝜆

2
 at this 

frequency is half a wavelength.  Equivalently it would require four of our transmission lines to fill a 
wavelength with a frequency of  𝑓 = 1.7𝐺𝐻𝑧 and a period of 𝑇 = 600𝑝𝑠. Meaning this frequency 

represents the 𝑙𝑒𝑛 =
𝜆

4
  point.  
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Figure 13: Simulation of 1/2 Wave Resonances Results 

By performing an S-parameter sweep from 0 → 10 GHz we should see a resonance in the S-parameters, 

and furthermore we should see that resonance repeating at fixed 
𝜆

2
 intervals as shown in Figure 13. 

In the steady-state analysis I've shown, from the wave equation, how to calculate step by step the 
voltages for different wavelengths on a resonant structure. I've shown how easy it is to derive the S-
parameters from the calculated voltages. Furthermore, I've derived the equation for the standing wave 
and its dependence of position. I've also proved that having a standing wave is not sufficient condition 
to develop dips/peak in the insertion loss profile of S-parameters. Additionally, I’ve shown that the 
resonance is happening at intervals multiples of half the wavelength, or in time, two times the 
propagation delay between the discontinuities, and that for a half-wave resonance to develop the 
discontinuities at both ends of the transmission line should be similar. 

This has important practical implications as topologies of this kind can be found very often. In short, if 

you find a topology with at least two discontinuities with approximately the same value, separated by 

some transmission line length, and you see a dip/peak on the insertion loss, you should now be able to 

relate that resonance with the physical separation on the topology by calculating the resonance dips as 

indicated, and be equipped to understand the resonances observed in the S-parameters. 

Now that we have introduced all the fundamental formulations, we can switch to the time domain. The 

next section provides a more visual and intuitive analysis of resonances and connects them with the 

fundamental analysis already completed in the frequency domain. 
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TIME DOMAIN ANALYSIS 
Perhaps the easiest way to understand a resonance is from a time domain viewpoint. For example, we 
can create a simple simulation by sending a pulse on a transmission line that is reflecting part of the 
incident signal. Every time we introduce a transmission line, we need to recognize that voltages and 
currents will depend on two independent variables: time and space, meaning that 𝑉( 𝑧1 , 𝑡1 ) likely will 
be different than 𝑉( 𝑧2 , 𝑡2 ) . As shown in the previous section we can expect to have traveling waves 
propagating in different directions in transmission lines. In the previous section, we formally analyzed 
the existence of traveling waves, in this section we will be looking at it at a higher level and more 
intuitively.  

 

Single Reflection Case 

 

Figure 14: Time Domain, One Reflection Diagram 

Figure 14 shows a simple circuit with 𝑡1 = 𝑡𝑝𝑑 = 150 𝑝𝑠 lossless transmission line with a characteristic 
impedance of 𝑍𝐶 = 50 𝛺 . There is perfect matching at the source, and a slight reflection at the load, 
because 𝑍𝐿 = 40Ω.  

This circuit will have only two propagating waves. One is in the positive going direction from source to 
load, named 𝑉𝑖𝑛(𝑡) 𝑜𝑟 𝑉1

+(𝑡) , and another on the negative going direction, from load to source, named  
𝑉𝑟(𝑡) 𝑜𝑟 𝑉1

−(𝑡). Please note, in this nomenclature 𝑉𝑖𝑛(𝑡), 𝑉1
+(𝑡), 𝑉1

−(𝑡) happens at 𝑧 = 0 and in the 
same way, 𝑉𝑟(𝑡), 𝑉2

+(𝑡), 𝑉2
−(𝑡) happens at 𝑧 = 𝐿. 

One important and sometimes easily forgotten point is that any voltage or current in the circuit, as it 
would be measured by an oscilloscope, is really the superposition of all the traveling waves passing by 

that location (z) and at that instant of time (t) as shown in 36 

 𝑉(𝑧 = 0, 𝑡 = 0)  = 𝑉(0,0)  =  𝑉1(0) = 𝑉1
+(0) + 𝑉1

−(0)

      𝑉(𝑧 = 𝐿, 𝑡 = 𝑡1)  = 𝑉(𝐿, 𝑡1)  =  𝑉2(𝑡1) = 𝑉2
+(𝑡1) + 𝑉2

−(𝑡1)
 

36 

 

In such a simple circuit we can easily calculate these independent traveling waves by calculating the 
reflection coefficient at the load and source. 
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𝑉1
+(0,0) = 𝑉𝑠 ⋅

𝑍0
𝑍0 + 𝑅𝑆

= 0.5𝑉 
37 

   

 𝑉1
+(0) = 𝑉2

+(𝑡1) 38 

 
Γ𝐿 =

𝑉2
−(𝑡1)

𝑉2
+(𝑡1)

=
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

= −
1

9
 

39 

 

Please note Equation 38, which is defined as the continuity equation. It simply means that in the lossless 
environment, the propagating waveform sent is unchanged as it travels through the transmission line in 
either direction, forward or backward propagating wave.  With the set of equations above, we can 
calculate the reflected voltage, and, thanks to the continuity equation, we can transfer it to the 
beginning of the line as follows: 

 𝑉1
−(2𝑡1) = 𝑉2

−(𝑡1) = Γ𝐿 ⋅ 𝑉2
+(𝑡1) = −55𝑚𝑉 40 

Notice in 40 the reflected waveform of −55𝑚𝑉 will be arriving at the source with a delay of 2 ⋅ 𝑡𝑝𝑑 =
300𝑝𝑠. Because our pulse source is only 100𝑝𝑠 long, the reflected pulse will arrive to the source much 
after the injected pulse falls to zero. Hence the source will drive two steps before the reflection comes 
back, one from 0𝑉 𝑡𝑜 1𝑉 and then 100𝑝𝑠 later another step from 1𝑉 𝑡𝑜 0𝑉. In essence, there will be 
two forced incident steps in this circuit, separated by 𝑡𝑠 = 100𝑝𝑠. 

The results of the simulation can be seen in Figure 15. The plot shows total voltages as you would see 
when measuring with an oscilloscope. We can observe the 500𝑚𝑉 source or incident voltage, then after 
a propagation delay of 150𝑝𝑠 how the voltage is slightly reduced at the load due to a negative reflection 

of −
1

9
 . We see then the second step at the source from 1𝑉 𝑡𝑜 0𝑉, and how it propagates to the load, 

finally observing the negative reflection pulse back at the source after the source has been quiet. 
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Figure 15: Single Reflection Results 

 

Total voltage (as measured by an oscilloscope) is calculated as the superposition of traveling waves at a 
particular location and instant in time, under those conditions we can simply calculate them as follows: 

 𝑉2(𝑡1) = 𝑉2
+(𝑡1) + 𝑉2

−(𝑡1) = 444𝑚𝑉

     𝑉1(2𝑡1) = 𝑉1
+(2𝑡1) + 𝑉1

−(2𝑡1) = −55𝑚𝑉
 

41 

 

The nice feature of this scenario is that since we have only a single reflection at the load, but a perfectly 
matched source, in the result plot we can see directly the reflected propagating voltage 𝑉1

−(2𝑡1) =
−55𝑚𝑉 even though we are measuring the total voltages, since 𝑉1

+(2𝑡1) = 0 

Another observation is that for each incident pulse, we have a single reflection. A single propagating 
wave pulse travels in the “z+” direction and a single reflected propagating wave pulse travel in the “z-” 
direction. Loosely, in this context, we can conclude there are no resonances as expected from the lack of 
a second discontinuity as described in the resonance definition. We can see that on Figure 15, after the 
reflection is absorbed at the source, everything is quiet, “nothing resonates.” 

 

Dual Reflection Case 
Let us now make the circuit resonate. 
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Figure 16: Topology with two Discontinuities 

In this case, the requirement for a resonance to occur is met since we have two discontinuities 
separated by a transmission line. To see a bigger effect, we've increased the reflection at both ends by 
changing the source and load terminations to 20Ω  

 
𝑉1(0) = 𝑉1

+(0) = 𝑉𝑠 ⋅
𝑍0

𝑍0 + 𝑅𝑆
= 714.3𝑚𝑉 

42 

 𝑉1
+(0) = 𝑉2

+(𝑡1) 43 

 

 

 

Γ𝐿 =
𝑉2
−(𝑡1)

𝑉2
+(𝑡1)

=
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

= −
3

7
 

44 

 𝑉1
−(2𝑡1) = 𝑉2

−(𝑡1) = Γ𝐿 ⋅ 𝑉2
+(𝑡1) = −306𝑚𝑉 45 

 

 𝑉2(𝑡1) = 𝑉2
+(𝑡1) + 𝑉2

−(𝑡1) = 408.3𝑚𝑉

𝑉1(2𝑡1) = 𝑉1
+(2𝑡1) + 𝑉1

−(2𝑡1) + 𝑉1
−(2𝑡1) ⋅ Γ𝑆 = −174.9𝑚𝑉

 
46 

 

As shown above, all the reflections and ultimately voltages can be calculated. Note now how the 
reflected voltage calculation at the source gets a bit more complicated due to the un-matched source 
impedance.  

A single pulse is sent, after its pulse width, there is no more energy sent by the source, nevertheless, 
when we observe the response, a clear resonance that continues over time long after the source pulse 
has ended is present as shown in Figure 17Error! Reference source not found.. The period and 
frequency of that resonance can be readily computed from the waveform. 

This type of analysis is easily visualized using a lattice diagram as shown in Figure 18. The horizontal 
dimension represents space, the vertical dimension represents time. The voltage is calculated when a 
wave arrives at a port. This can be viewed, as sampling the continuous time domain voltage when the 
waveforms arrive at either port. Each arrow from source to destination and vice-versa represents the 
traveling wave from one port to the other. Reflected waves either at the source or destination are 
calculated as 𝑉𝑖𝑛 ⋅ Γ𝑃. 
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In addition, since in our example we have a pulse, not a step, there are two sets of traveling waves, one 
generated by the rising edge and the other by the falling edge of the pulse separated by a pulse width 
𝑝𝑤.  

Those voltage sequences have been illustrated with different colors in the lattice diagram. Finally, every 
voltage at every port 𝑉1, 𝑉2 are calculated by summing the previous voltages at the line plus all the 
reflected and incident voltages leaving or entering a port. 

Calculating every voltage following the lattice diagram is tedious and prone to error. To mitigate this 
problem, a closed form solution has been derived to calculate the sequence of reflections from a pulse 

as depicted in 47Error! Reference source not found.. The equation has been derived for 𝑉2 , where 𝑛  
represents the reflection number at the destination port.  

In our example, a pulse is sent with a rising and falling edge, because of it, the calculation of 𝑉2(𝑛) must 
be done twice, for the rising and falling edge +𝑉𝑎 , −𝑉𝑏 respectively.  

After the series of reflection voltages for each 𝑛 is calculated for 𝑉2 rise and  𝑉2 fall. The composite and 
final voltage is computed by 𝑉2𝑟𝑖𝑠𝑒(𝑛) + 𝑉2𝑓𝑎𝑙𝑙(𝑛 + 1). 𝑉2𝑓𝑎𝑙𝑙  (𝑛 + 1) represents the voltage series 

shifted one 𝑡𝑝𝑑 which is approximately the 𝑝𝑤 (pulse width) in our case. 

 

 

Figure 17: Closed Form for Attenuated Reflections 
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Figure 18: Lattice Diagram 

 

 𝑉2(𝑛) = 𝑉2(0) + 𝑉𝑎 ⋅ (Γ𝐿 ⋅ Γ𝑆)
𝑛−1 ⋅ (1 + Γ𝐿)

𝑉2(0) = 0, 𝑉𝑎 = 𝑉𝑆 ⋅
𝑍0

𝑍0 + 𝑍𝐶
, 𝑛 = (1,∞)

𝑉2(𝑛) = 𝑉𝑎 ⋅
1 + Γ𝐿
Γ𝐿 ⋅ Γ𝑆 − 1

⋅ ((Γ𝑆 ⋅ Γ𝑆)
𝑛−1 − 1)
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The results from the closed form solution to calculate reflections and attenuated voltages over time can 

be seen in Figure 18Error! Reference source not found.. Note the attenuations becomes so small, that a 

logarithmic scale is shown on the y-axis. 

 

In our example, since we have the same discontinuities at the ends, the period 𝑇 = 300𝑝𝑠 of the 
resonant frequency represents a round-trip delay between source and destination.  

For a half-wave resonance to develop two additional conditions are required: 

1. The discontinuities at both ends of the transmission line should be the similar In the 
extreme case, when the line is tied to ground at both ends, the voltages will be equal to zero 
since the line is grounded at those locations. This does not mean, the voltages elsewhere in 
the line will be also zero. The voltages along the line are the superposition of traveling 
waves at every point. This superposition of traveling waves produces a standing wave. In our 
example, and for this kind of standing wave, we will see a maximum absolute voltage at the 
middle of the line that will decay symmetrically as we approach the ends. Please realize this 
is just one extreme case of a ½ wave resonance, the other extreme is when the 
transmission is left open with a Γ𝑆 = Γ𝐿 = 1 .In this case, the resonance is such that the 
maximum absolute voltage will be at the ends, and the minimum will be at the middle. This 
resonance is just 180° off from the case in our example. 

2. The reflection coefficients at the ends should not be zero: In order to have a discontinuity, 
we need reflection at the ends, the bigger the reflection, the bigger the resonance 
magnitude. The termination (discontinuity) values must be different from the transmission 
line characteristic impedance 

Deriving a Half-Wave Resonance in the Time Domain 
Steady state sinusoidal analysis was shown in the previous section to derive resonance patterns for 
different discontinuities leading to the concept of a standing wave and VSWR. In the time domain at a 
high-level we can perform simple tricks to show the same behavior.  

Since we want to observe the voltages along the transmission line, the simulation deck will  divide it to 

ten equal transmission line pieces with a 𝑡𝑝𝑑𝑝𝑖𝑒𝑐𝑒 =
𝑡𝑝𝑑𝑡𝑜𝑡𝑎𝑙

10
 providing ten observation points along the 

transmission line as shown in Figure 19. 

To make the reflections strong, the source and load terminations will be changed to 1Ω . This setup is 
close to the extreme shorted case at both ends but still allows us to inject a pulse into the circuit. The 
voltages at each location on the transmission line will be calculated and plotted so you can see the 
shape of the standing wave at different locations of the line.  

Since we are trying to do a steady state analysis, but we have a transient pulse, we will compute the 
absolute value of the voltage at each location and calculate its mean. Ultimately, we'll end up with 10 
points along the line with a mean voltage value. If we claim to have a ½ wave resonance, with very low 
source and load terminations as compared to the transmission line characteristic impedance, we should 

expect a maximum voltage at the center 
𝐿

2
  and minimum voltages symmetrically at the source and 

destination points.  
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Figure 19: Time Domain Half Wave Resonance Diagram 

by going from Step1 to Step3 we show the expected behavior. Remember, in our topology example with 
low source and load termination values with respect to the transmission line characteristic impedance, 
the reason we have a maximum of voltage at the center of the transmission line is because forward and 
backward traveling waves are adding constructively to form the maximum mean voltage on the line. At 
other locations of the line the superposition is not completely constructive, and finally at the end it is 
100 percent destructive, meaning, at the end points where the wave hits either the source or load 
terminations, there is a reflection coefficient Γ ≅ −1, meaning 𝑉 = 𝑉+ ⋅ (1 + Γ) ≅ 0. When we plot the 
voltage values in Step 3 and compare it to a sinewave, the resonance formed in the transmission line 
looks like half of a sinusoidal wave. 

 

 

Figure 20: Half Wave Resonance Result in Time Domain 
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I wanted to touch base briefly on ¼ wave resonances that are also important and commonly found on 
many topologies. To accomplish this, I'll modify the topology slightly as shown in Figure 21, please notice 
the source termination is smaller, and the load termination is much higher than the transmission line 
characteristic impedance. Under those conditions a ¼ wave resonance will be formed.  

In such a resonance we could expect the standing wave will look like ¼ of a sine wave, experiencing a 
minimum at the source and a maximum at the load. 

 

 

 

Figure 21: Quarter Wave Resonance Diagram 

In Figure 22 it on the left, you see how the resonance period is 𝑇 = 600𝑝𝑠 = 4 ⋅ 𝑡𝑝𝑑 , meaning the 
traveling wave should travel back and forth twice for the resonance to develop. Also, using the same 
tricks done for the ½ wave, when plotting the voltage waveforms at all the points in the line, we can 
indeed see how the maximum voltage is developed at the end and the minimum is developed at the 
beginning. This type of structure in the RF literature is sometimes referred as a ¼ wave transformer and 
has the property of changing the phase of impedance by 180°. It could transform an open at the end to 
a short at the beginning of the line. 
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Figure 22: Quarter Wave Resonance Results 

 
 
There is a very practical structure in signal integrity that behaves this way: via stubs. A stubby via in a 
50Ω environment will see low impedance at one end, and an open stub at the other. If we consider the 
length of the stub as a transmission line, this forms a very strong ¼ wave resonator at high frequencies. 
If the electrical length of the via (at higher frequency) is long enough we could expect a strong 
resonance dip at that frequency and almost full attenuation. 

We can clearly see these half-wave resonances both in the frequency and time domain, just a different 
approach to see the same effect. Ultimately, the point is that when we have these types of structures, 
we should expect to see dips/peaks at exactly: 

 
𝑓 =

1

2 ⋅ 𝑡𝑝𝑑𝑙𝑖𝑛𝑒
 

48 

 

Well, exactly?  

If you were observant, you might have noticed in prior sections, the discontinuities at the ends were 
always resistive. This is an interesting theoretical case since it allows us to develop all the conceptual 
framework and understanding, but, of very little practical applicability. Most of the time, at the ends we 

will encounter reactive discontinuities, in which case the peaks/dips will not follow exactly Equation 48, 
but for the most part it will be close. 

Before we go into a couple of practical application cases, I’d like to explore some differences between 
resistive and reactive discontinuities when producing half-wave resonances. 
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HALF WAVE RESONANCE WITH REACTIVE DISCONTINUITIES 
So far, all the termination discontinuities we used have been resistive. Let us compare a resistive to a 

capacitive discontinuity, to determine what happens. Figure 23 shows the topology for both cases. 

 

 

Figure 23:Capacitor vs. Resistive Discontinuity Diagram 

We see something quite interesting and telling when computing both cases. Figure 24 shows the 

resistive and capacitive discontinuities. By following the markers, we realize that the first resonant 

frequency on the resistive case is indeed 𝑓 =
1

2⋅𝑡𝑝𝑑
= 3.33𝐺𝐻𝑧 as expected, and it’s shown as a peak in 

the insertion loss. Every other harmonic resonance is exactly 3.33𝐺𝐻𝑧 away from the fundamental and 

repeating with the same cadence. 

On the other hand, for the capacitive discontinuity, we see the first resonance is close to the expected 

3.3𝐺𝐻𝑧 but not exactly. Also, the first harmonic is shifting from the expected 𝑓ℎ1 = 2 ⋅ 3.33𝐺𝐻𝑧 . 

Furthermore, in the capacitor case we see a dip in the insertion loss as compared to a peak on the 

resistive case. 

There are three questions we still need to answer, even for these simple cases: 

1. Why does the resistive case have a peak and the capacitive case a dip in the insertion loss at the 

first resonant frequency? 

2. In the capacitive case, why does the frequency of the dip not follow exactly this equation , 𝑓 =
1

2⋅𝑡𝑝𝑑
   as the resistive case does? 

3. Why does the separation between harmonics seems to be changing on the capacitive case? 
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Figure 24: Capacitor vs. Resistive Discontinuity Results 

From a simple and graphical viewpoint, the best way to explain the questions above is with the help of a 
phasor representation as shown in Figure 25 

In the figure we see a 𝑉𝑖𝑛 phasor plus another six phasors that means: 

𝑽𝒊𝒏: Incident waveform with an angle of 0° 

𝑽𝑹𝟏(𝑹): Resistive case, first reflection. Please note since Γ~ − 1, there is almost a full negative 
reflection with an angle of 180°   

𝑽𝑹𝟐(𝑹): The first negative reflection bounces back to the source. At the source it’ll have another 
negative reflection (since the termination at source and load is the same), hence bringing back the 
phase to 0°. 

If we pause a moment, and look at the diagram, we realize 𝑉𝑅1𝑎𝑛𝑑 𝑉𝑅2 both rotate 180° resulting in a 
𝑉𝑅2 in phase with 𝑉𝑖𝑛 allowing the maximum voltage to develop. 

If you want to double check, you can refer to  Equations  26 through 35, and you’ll be able to reproduce 
exactly the peak amplitude in dB shown in Figure 24.  

Furthermore, any other frequency producing a wavelength different from 
𝜆

2
, will invariably result in 

lower insertion loss values. This can be visually understood realizing that 𝑉𝑅1𝑎𝑛𝑑 𝑉𝑅2reflections will not 
perfectly cancel, and the resulting vector will ultimately subtract from the incident voltage. You can also 
check this out but going through the equations. I’ll leave this exercise to the reader. 

𝑽𝑪𝟏(𝑿𝑭𝟏): Represents the first reflection at the fundamental on the capacitive case. With a capacitive 
discontinuity we realize that the reflection does not have a phase of 180° as in the resistive case, but 
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only a phase of approximately −90° . The reflection is not exactly −90° since the capacitor is loaded 
with the parallel impedance of the transmission line and port impedance and that changes the phase. 

𝑽𝑪𝟐(𝑿𝑭𝟏): Represents the second reflection at the fundamental frequency, and as explained above 
produces another rotation of −90°, bringing the total phase rotation to approximately −180°. 

We can immediately see, different from the resistive case the full rotation will produce a phasor that is 
approximately (but not exactly) 180° from 𝑉𝑖𝑛, in essence subtracting from it and producing a minimum 
in the insertion loss, not a maximum. 

𝑽𝑪𝟏(𝑿𝑭𝟐): Represents the first reflection on capacitive case at the first harmonic (higher) frequency. 
We need to realize that as the frequency increases, the capacitive discontinuity becomes closer and 
closer to a short, the phase gets closer to what it was with the resistive discontinuity. 

𝑽𝑪𝟐(𝑿𝑭𝟐): Represents the second reflection on the capacitive case at the first harmonic (higher) 
frequency. We can see now that at higher frequencies, the second rotation gets closer to the resistive 
case and hence at higher frequencies the peaks and dips between these two cases will align as shown in 
Figure 26. 

 

 

Figure 25: Phasor Representation of Capacitive and Resistive Discontinuities 
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Figure 26: Resonance Shift on Capacitive Case 

 

With the above examples we’ve been able to explain some subtleties of different types of 

discontinuities from a high-level visual viewpoint. But at this point with all the knowledge gained so far, 

we are in a good position to look at a couple of practical examples. 
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PRACTICAL EXAMPLES OF HALF-WAVE RESONANCES 
In this section I’ll present two cases that are very common for the SI-engineer to encounter in several 

topologies. I’ll show a cable assembly example and an open pin field connector. 

You’ll see these two structures are particularly susceptible to half-wave resonances. 

 

Cable Assembly 
A cable assembly is a cable connecting two circuits. For high frequency applications in particular, cables 

are selected to minimize as much as possible the losses, but this makes the structure more susceptible 

to resonances. A cable assembly will contain the cable and the termination at both ends, where the 

cable connects either to a connector or directly to a board. Most often than not, those end cable 

connections are the same at both extremes of the cable and as much as people try to minimize those 

connecting discontinuities they can’t completely be eliminated. 

Figure 27 shows an example of a short cable assembly 

 

 

Figure 27: Cable Assembly Example 

 

I will construct the model of a generic cable assembly, with different lengths and realistic discontinuities 
at each side, and we’ll study the insertion loss to determine if we can see the resonance and how 
several parameters affect it. Please note the end discontinuities could come from multiple sources. For 
example, when we peel a cable to solder into a board or connector directly or a breakout region with 
capacitive vias at the end, or any other number of small imperfections in the channel that results from 
having to somehow, connect the cable to the end points. 
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Figure 28: Cable Assembly Diagram 

For this test structure, I used a good cable, and created reasonable end discontinuities at each end to 

compute the insertion loss for different lengths. In Figure 29 you can see the TDR for different lengths. 

As expected for the longer cables, the discontinuity blip at the end looks reduced due to the normal 

attenuation loss of the cable. 
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Figure 29: Cable Assembly TDR 

When we look at the insertion loss profile in Figure 30, we can clearly see the half-wave resonance on 
the cables. We can see that the shorter the cable, the less loss it has, the wider the fluctuation of the 
resonance, and the more you see it in the profile. As losses increase, and the fundamental resonance 
decreases, the ripples are less evident as can be seen by the green curve.  
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Figure 30: Cable Assembly Insertion Loss 

This is very typical so you should not be surprised when you see this type of behavior, particularly in 

shorter cable assemblies. 

Open Pin Field Mezz Connector 
In this case, we have a short mezzanine connector used to attach two boards. These connectors come in 

many shapes, flavors, and heights.  

 

 

Figure 31: Mezzanine Connector Diagram 

Many high frequency connectors, particularly for very high frequencies, contain special structures in 

order to carry the GND signals from one side to the other, basically making the pins locations defined a 

priori. An open-pin field connector is a connector that treats every pin equally. This means, it’s up to the 

user to select which pins connect to signals and which pins connect to gnd. Many of these open pin-field 

connectors are very flexible, since it allows engineers to define their own pin-out and if properly 

designed into systems, they would allow the transfer of high-frequency signals as well. 
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In this example, when you look at Figure 31, please note I have included two different pins. One is a 

signal pin, but the other is a GND pin.  

Even though in the signal pins we can’t always guarantee that the impedance inside the connector will 

be the same as the impedance on the surrounding breakout regions on the boards, we could expect the 

delta in impedance not to be big. On the other hand, when we press attention to the GND pin, we notice 

we have a situation very similar (almost identical) to the R-TOP of Figure 23. The pin has some finite 

impedance inside the connector, but it is tied to big planes and GND so that the pin is shorted at both 

ends.  

So even though the height of the connector in general is short, we should expect to see a resonance 

effect. 

 

 

Figure 32: Mezz Connector Insertion Loss Results for Different Connector Heights 

 

In Figure 32, we can see the dips clearly changing frequencies as the connector height changes. By 

computing 𝑓 ≅
1

2⋅𝑡𝑝𝑑(ℎ𝑒𝑖𝑔ℎ𝑡)
 we can see the calculations predict very closely the dips, proving the 

resonance is a half-wave resonance depending on the connector height. 

 

Another important aspect to consider is that a resonating structure can make a great antenna. At the 

resonant frequencies we could expect to have more crosstalk. In this situation, by doing a field solver 

simulation and computing the fields before, at and after the resonance frequency, we can clearly see the 

effect of it as illustrated in Figure 33. 
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Figure 33: Resonant Fields and Cross Talk 

 

 

In conclusion, you can see how easily and readily, half-wave resonances can be found in typical 

topologies. Pretty much any component you insert into a system, will likely be attached similarly at both 

ends in which case you are promoting this type of resonance. 

By understanding the mechanism of the resonance and realizing how to identify and calculate its 

resonant peaks/dips, you can attempt to minimize its effect. 
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